Multi-Objective Differential Evolution with Adaptive Control of Parameters and Operators
نویسندگان
چکیده
Differential Evolution (DE) is a simple yet powerful evolutionary algorithm, whose performance highly depends on the setting of some parameters. In this paper, we propose an adaptive DE algorithm for multi-objective optimization problems. Firstly, a novel tree neighborhood density estimator is proposed to enforce a higher spread between the non-dominated solutions, while the Pareto dominance strength is used to promote a higher convergence to the Pareto front. These two metrics are then used by an original replacement mechanism based on a three-step comparison procedure; and also to port two existing adaptive mechanisms to the multi-objective domain, one being used for the autonomous selection of the operators, and the other for the adaptive control of DE parameters CR and F. Experimental results confirm the superior performance of the proposed algorithm, referred to as AdapMODE, when compared to two state-of-the-art baseline approaches, and to its static and partially-adaptive variants.
منابع مشابه
Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملA Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...
متن کاملComparison of Parameter Control Mechanisms in Multi-objective Differential Evolution
Differential evolution (DE) is a powerful and simple algorithm for singleand multi-objective optimization. However, its performance is highly dependent on the right choice of parameters. To mitigate this problem, mechanisms have been developed to automatically control the parameters during the algorithm run. These mechanisms are usually a part of a unified DE algorithm, which makes it difficult...
متن کامل